WHAT'S THE MATTER? (weeks 1-5)
This unit is all about understanding: the true nature of atomic structure according to our most up-to-date atomic models; the shape and geometry of molecules, and how that directly influences the macro properties of useful substances in our everyday lives; and how a more advanced understanding of enthalpy and entropy can help us easily predict beforehand whether a chemical process is likely to occur spontaneously ("Wow, that was a large explosion...") or not happen at all ("Aw, nothing happened...")
We will first study atomic structure, quantum mechanics, and electron configuration. We will then apply that knowledge to better understand periodic trends (electronegativity, ionisation energy, atomic and ionic radii).
On top of that, we will expand upon our Level 2 knowledge of 3-D VSEPR molecular shapes and intermolecular forces, and apply that knowledge to study substances with useful properties and recent applications in our society, such as superconducting materials, nanomaterials, integrated-circuit chips, polymers, fuel cells, and more.
Finally, we'll heat things up a bit and explore thermodynamics in exciting contexts, such as solid vs liquid fuel propulsion systems in the aerospace industry.
There will be an external assessment opportunity (AS91390 - 5 credits).
Contexts: Rocketry
Essential vocabulary: atomic number, atomic shell/subshell/orbital, electron configuration, electronegativity, ionisation energy, atomic radius, ionic radius, expanded octet, bond dipole, temporary dipole, permanent dipole, molecular dipole, polar vs non-polar, endothermic vs exothermic, enthalpy, entropy, Gibb's free energy, Hess's Law, spontaneous vs non-spontaneous, standard conditions, standard enthalpy of fusion/vaporisation/sublimation, standard enthalpy of combustion/formation
SOMETHING IN THE WATER...(weeks 6-10)
The concept of equilibrium is foundational to the field of chemistry, and it will help deepen our understanding of topics we've already looked at, such as organic chemistry and thermodynamics. We'll look at real-world contexts where the principle of chemical equilibrium is key to life on our planet, such as its role in regulating the pH of our oceans and our blood.
There will be an external assessment opportunity (AS91392 - 5 credits).